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Darwin’s dynamical theory of X-ray diffraction is extended to the case of lateral

(i.e., having a finite length in the lateral direction) crystalline structures. This

approach allows one to calculate rocking curves as well as reciprocal-space maps

for lateral crystalline structures having a rectangular cross section. Numerical

modelling is performed for these structures with different lateral sizes. It is

shown that the kinematical approximation is valid for thick crystalline structures

having a small length in the lateral direction.

1. Introduction

There are several approaches to X-ray dynamical diffraction

by crystals (see, e.g., Authier, 2001; Pietsch et al., 2004 and

references therein). Among them Darwin’s diffraction theory

(Darwin, 1914a,b), based on recurrence relations, presents

arguably the most simple and transparent way to describe

X-ray and neutron dynamical diffraction by crystals. However,

Darwin’s theory (in its original formulation) has more

restrictions in comparison with Laue–Ewald’s theory (see, e.g.,

Authier, 2001); therefore it was not widely used. Borie (1966)

first used Darwin’s recurrence relations to describe the Borr-

mann effect. Using Borie’s approach, Bezirganian & Nava-

sardian (1969) showed that the Borrmann effect depends on

the lateral size of crystals. Darwin’s theory was also used to

investigate (i) diffraction in the asymmetric Laue geometry

(Borie, 1967; Kuznetsov & Fofanov, 1970), (ii) multiwave

diffraction (Kuznetsov & Fofanov, 1972; Ignatovich, 1992) and

(iii) properties of the dispersion surface (Borie, 1967). The

recurrence relations for the amplitudes of transmitted and

reflected waves were also employed to investigate neutron

diffraction by polyatomic crystals (Ignatovich, 1990) and

scattering of visible light in liquid crystals (Chandrasekhar &

Rao, 1968). Darwin’s recurrence relations were also used in

multilayer materials optics (Dub & Litzman, 1999).

The crystal truncation rod (CTR) method (Robinson, 1986)

was originally developed within the framework of kinematical

diffraction for characterization of surface layers. Darwin’s

dynamical diffraction approach was implemented in the CTR

technique in Caticha (1994), Nakatani & Takahashi (1994),

Takahashi & Nakatani (1995), Durbin & Follis (1995) and

Takahashi et al. (2000).

Yashiro & Takahashi (2000) analysed the reflection and

transmission coefficients of a single atomic plane for an arbi-

trary two-dimensional Bravais lattice. Their results (Yashiro &

Takahashi, 2000) are similar to those obtained by Borie

(1967); however, they differ from ones obtained by Durbin

(1995). Later, on the basis of Yashiro & Takahashi (2000) a

variant of Darwin’s theory for grazing-incidence geometry was

developed (Yashiro et al., 2001).

Prins (1930) analysed the effects of refraction and absorp-

tion for semi-infinite crystals. An exact solution of Darwin’s

recurrence equations for a crystal with an arbitrary number of

reflecting planes was obtained by Perkins & Knight (1984)

with the use of the Chebyshev polynomials (Abramowitz &

Stegun, 1972). Chen & Bhattacharya (1993) showed that the

Darwin recurrence relations are identical to Takagi’s differ-

ential equations (Takagi, 1962) as one goes from an array of

discrete atomic planes to a continual model of medium.

Most crystalline structures are non-ideal, e.g., they contain

defects. Statistical dynamical diffraction theory (in the case of

a plane-wave illumination) (Bushuev, 1989; Punegov, 1990,

1991, 1993; Pavlov & Punegov, 1998, 2000) using Takagi’s

equations (Takagi, 1962) is one possible way to describe X-ray

dynamical diffraction in such structures. However, Darwin’s

theory (Darwin, 1914a,b), which was originally developed for

an ideal crystal, can also be modified for use with non-ideal

crystals. For instance, Chung & Durbin (1999) considered the

thermal vibration effect. Li et al. (1997) examined the influ-

ence of statistically distributed defects. X-ray diffraction is

particularly sensitive to deformation of the crystalline lattice,

which is another variant of deviations from an ideal crystalline

structure. First attempts at modelling X-ray diffraction by a

crystal with a linear lattice parameter variation using Darwin’s

approach were done by Fitzgerald & Darlington (1976). Their

numerical results were confirmed later by analytical solutions

(Kolpakov & Punegov, 1985; Punegov & Vishnjakov, 1995).

Prudnikov obtained analytical solutions for the cases of

crystals distorted by surface acoustic waves (Prudnikov, 1998)

and non-ideal heterostructures (Prudnikov, 2000).

Recurrence relations (similar to Darwin’s equations) were

obtained for multilayer structures. Therewith the reflection
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and transmission coefficients for a single atomic plane were

replaced by the appropriate coefficients for crystalline layers

(Belyaev & Kolpakov, 1983; Bartels et al., 1986). This approach

was further extended to multiwave diffraction (Ladanov &

Punegov, 1989; Punegov, 1993), highly asymmetrical diffrac-

tion geometry (Punegov & Ladanov, 1989b, 1990) and glan-

cing geometry (Punegov & Ladanov, 1989a).

All the above-mentioned Darwin recurrence relations

approaches were obtained for planar structures with atomic

planes, which are assumed to be infinitely large in the lateral

direction. In recent years there has been a renewed interest in

X-ray diffraction on lateral structures (see, e.g., Kaganer &

Belov, 2012; Minkevich et al., 2011; Lee et al., 2006 and

references therein). Different dynamical diffraction approa-

ches (Olekhnovich & Olekhnovich, 1978; Thorkildsen &

Larsen, 1999b; Kolosov & Punegov, 2005) using Takagi’s

equations were employed to calculate rocking curves from

ideal (i.e. non-deformed) crystals with rectangular cross

section. Kinematical diffraction theory was used to simulate

X-ray diffraction on deformed crystals having a trapezium

cross-sectional shape (Punegov et al., 2006; Punegov &

Kolosov, 2007) or an arbitrary cross-sectional shape (Punegov

et al., 2007).

However, using Takagi’s equations to simulate dynamical

X-ray diffraction on lateral crystalline structures (Becker,

1977; Becker & Dunstetter, 1984; Olekhnovich & Olekhno-

vich, 1980; Saldin, 1982; Chukhovskii et al., 1998; Thorkildsen

& Larsen, 1999a) is a time-consuming procedure that hinders

the use of dynamical diffraction to solve inverse problems for

such structures. It is timely to explore possibilities offered by

simple algebraic Darwin recurrence relations in application to

lateral crystalline structures. This will extend the original one-

dimensional Darwin approach to the two-dimensional case in

both the Fourier space (reciprocal-space maps, RSMs) and

real space (lateral crystalline structures).

The purpose of this paper is to extend Darwin’s approach to

X-ray dynamical diffraction by lateral crystalline structures. In

particular, we demonstrate how our new approach can be used

to simulate RSMs for lateral plane-parallel crystalline struc-

tures of different sizes and thicknesses.

2. Darwin’s diffraction on a plane-parallel crystal

Before proceeding to obtain a new approach to X-ray

diffraction by lateral plane-parallel crystalline structures, we

provide a short review of Darwin’s approach in the case of

plane-parallel crystals. Darwin’s approach considers a crystal

as a combination of atomic planes with a distance d between

those planes. Unlike Laue’s theory (see, e.g., Authier, 2001),

the Darwin model of crystals assumes that all electron density

is placed on those atomic planes. The amplitude reflection

coefficients, q and �qq, and transmission coefficient, 1� iq0, of

an atomic plane can be calculated using Fresnel diffraction

(Borie, 1967; Yashiro & Takahashi, 2000). On the other hand,

these transmission and reflection coefficients are expressible

(Chen & Bhattacharya, 1993) in terms of the Fourier

coefficients of dielectric susceptibility (polarizability) �g ¼

�r0�
2Fg=ð�VcÞ, where Fg is the structure factor (g ¼ 0; h; �hh),

� is the wavelength, Vc is the volume of the elementary cell,

r0 ¼ e2=ðmc2Þ is the classical electron radius, c is the speed of

light in vacuum, and e and m are electron charge and electron

mass, respectively.

Thus, the appropriate coefficients in the Darwin recurrence

relations can be written as q0 ¼ �d�0=ð� sin �BÞ, q ¼

�d�h=ð� sin �BÞ and �qq ¼ �d��h=ð� sin �BÞ, where �B is the

Bragg angle. In this paper we consider a symmetrical coplanar

Bragg diffraction case for �-polarization. The equations can be

extended for �-polarization by incorporating cosð2�BÞ into

��h;h.

Let us consider a plane-parallel crystal having a finite

thickness of Lz ¼ dN, where N is the number of reflecting

atomic planes. The angle between the wavevector of an inci-

dent plane wave and the crystal surface is � ¼ �B þ��, where

�� is a small deviation from the Bragg angle.

Then the transmitted, Tn, and reflected, Sn, wave amplitudes

for the nth atomic plane can be written using the following

recurrence relations (Darwin, 1914b; Authier, 2001):

Tn ¼ ð1� iq0Þ expði’ÞTn�1 � i �qq expði2’ÞSn;

Sn ¼ ð1� iq0Þ expði’ÞSnþ1 � iqTn: ð1Þ

Here, Tn�1, Snþ1 are the wave amplitudes for the (n� 1)th and

(n + 1)th atomic planes, respectively. The additional phase

shift, ’ ¼ ð2�d=�Þ sin �, is caused by the propagation of the

wavefield between the atomic planes. Note that we use a

definition of the phase shift without the minus sign (cf.

Darwin, 1914b; Authier, 2001) because we use the following

definition for plane waves, exp½iðk � r� !tÞ�, instead of

exp½�iðk � r� !tÞ� used by other authors. As the angular

deviation �� is small, the phase shift ’ can be written in the

following form: ’ ¼ ð2�d=�Þðsin �B þ cos �B��Þ. Taking into

account the boundary conditions T0 ¼ 1 and SN ¼ 0, the

analytical solutions of equation (1) can be presented as follows

(Punegov, 1992):

Sn ¼ �B
uN

2 un
1 � uN

1 un
2

ðAu1 � 1ÞuN
2 � ðAu2 � 1ÞuN

1

;

Tn ¼
ðAu1 � 1ÞuN

2 un
1 � ðAu2 � 1ÞuN

1 un
2

ðAu1 � 1ÞuN
2 � ðAu2 � 1ÞuN

1

; ð2Þ

where u1;2 ¼ x̂x� ðx̂x
2
� 1Þ1=2,

x̂x ¼
1þ ð1� iq0Þ

2 expði2’Þ þ q �qq expði2’Þ

2ð1� iq0Þ expði’Þ
;

A ¼ ð1� iq0Þ expði’Þ and B ¼ �iq. From equation (1) we can

get the amplitude reflection, S0, and transmission coefficient,

TN , of the entire crystal:

S0 ¼ �B
uN

2 � uN
1

ðAu1 � 1ÞuN
2 � ðAu2 � 1ÞuN

1

;

TN ¼ A
u1 � u2

ðAu1 � 1ÞuN
2 � ðAu2 � 1ÞuN

1

: ð3Þ

Taking into account that un
1un

2 ¼ 1, equation (3) can be further

transformed into
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S0 ¼
�iq

1� ð1� iq0Þ expði’Þ sin ðN � 1Þ arccos x̂x½ �= sin N arccos x̂xð Þ
;

TN ¼
ð1� iq0Þ expði’Þð1� x̂x

2
Þ

1=2

sin N arccos x̂xð Þ � ð1� iq0Þ expði’Þ sin ðN � 1Þ arccos x̂x½ �
:

ð4Þ

This result is identical to equations (12) and (13) in Perkins &

Knight (1984).

Equation (4) can also be rewritten in a more compact form

(cf. Vardanyan et al., 1985):

S0 ¼
q

�qq

� �1=2
sin N�ð Þ

sin N�þ  ð Þ
expð�i’Þ;

TN ¼
sinð Þ

sin N�þ  ð Þ
expð�iN’Þ; ð5Þ

where

ŷy ¼
1� ð1� iq0Þ

2 expði2’Þ � q �qq expði2’Þ

2q �qq expði’Þ
;

� ¼ arccosðx̂xÞ and  ¼ arccosðŷyÞ.

3. Darwin’s diffraction on a lateral plane-parallel
crystalline structure

Now we use Darwin’s methodology of recurrence relations to

describe X-ray diffraction on a lateral crystalline structure

having width of Lx and thickness of Lz (see Fig. 1). The origin

is on a line that is the intersection of two planes, namely the

left vertical face and top surface of the structure. The x axis

and z axis form a diffraction plane so that the x axis is the

intersection of the diffraction plane and the top surface of the

structure, and the z axis is the intersection of the diffraction

plane and the left vertical face of the structure. Such a shape of

the structure is similar, for instance, to the shape of a single

quantum wire. We restrict ourselves to the case of a symmetric

coplanar Bragg diffraction. The angle between the wavevector

of an incident plane wave and the x axis is � (see Fig. 1).

Let us consider an X-ray beam that goes through the origin.

Then this beam travels d= sin � before being reflected by the

next atomic plane. The projection of this distance (i.e., d= sin �)

on the lateral direction is �x ¼ d cot �. We can use �x as a

step size along the x axis to indicate the positions xm ¼ m �x

(m is an integer) where this beam will be partially transmitted

to the next atomic plane or partially reflected.

Let Tm
n and Sm

n be the amplitudes of the transmitted and

reflected waves, respectively, upstream of the (m; n) node of a

two-dimensional rectangular lattice. Here, both m and n are

integers, where m corresponds to the node’s number in the

horizontal (lateral) direction, and n in the vertical direction

(see Fig. 2). The total number of nodes, Mx þ 1 and Nz þ 1,

along the x and z axes, respectively, is determined by the

structure width, Lx ¼ Mx�x, and thickness, Lz ¼ Nzd.
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Figure 1
The scheme of Darwin’s X-ray diffraction on a lateral crystalline structure
with a rectangular cross section.

Figure 2
The transmitted, T

j
i , and reflected, S

j
i, waves in the Darwin approach.

Figure 3
The wavevectors k, k0 of the incident and reflected waves, respectively. h
is the vector of the reciprocal lattice. The deviation of the scattering
vector, Q ¼ k0 � k, from the reciprocal-lattice vector h is defined by the
vector q. The angular deviations of k and k0 from the Bragg angle position
are described by ��1 and ��2, respectively.



Taking into account dynamical interactions of waves inside

the structure, we obtain the following recurrence relations

between the reflected, S, and transmitted, T, beams:

Tm
nþ1 ¼ a Tm�1

n þ b1Sm�1
n ;

Sm
n ¼ a Sm�1

nþ1 þ b2Tm�1
nþ1 ; ð6Þ

where a ¼ ð1� iq0Þ expði’lÞ, b1 ¼ �i �qq expði’lÞ and b2 ¼

�iq expði’lÞ. It should be noted that in equation (6) we use the

expressions for the constants q0, q and �qq obtained for an

infinitely large crystal, which is, obviously, an approximation.

Potentially, this method can be extended by way of replacing

these three constants by three functions depending on the x

and z coordinates. This will allow one to describe local non-

homogeneity in the lateral crystalline structures. The phase

shift ’l ¼ ð2�dÞ=ð� sin �BÞ is an additional phase shift occur-

ring when the wave propagates from one node to another.
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Figure 4
Optical path differences �1 ¼ x cos �1 þ z sin �1 and �2 ¼ �x cos �2

þ z sin �2 for an arbitrary point ðx; zÞ in a lateral crystalline structure.
Note that the angular deviations are not to scale.

Figure 5
�–2� scans (i.e. ��1 ¼ ��2 or qx ¼ 0) of X-ray diffraction on plane-parallel lateral crystalline structures (thick blue line) with thickness Lz = 3.27 mm for
different widths: (a) Lx = 1.35 mm, (b) Lx = 5.39 mm, (c) Lx = 13.5 mm and (d) Lx = 53.9 mm. Compare with �–2� scans of X-ray diffraction on a plane-
parallel crystal (thin red line) with thickness Lz = 3.27 mm and Lx =1.



Plane-parallel crystals are infinitely large in the lateral

direction. Therefore their diffracted intensity distribution

shape is a delta-like function depending on the vertical coor-

dinate in Fourier space. Unlike the plane-parallel crystals,

the lateral plane-parallel crystalline structures produce a

diffracted intensity distribution that has a more complex

shape. That is, their diffracted intensity distribution (i.e.,

RSM) depends on both the vertical and horizontal coordinates

in Fourier space.

Let us now assume that the angle between the wavevector

k of the incident plane wave and the x axis is �1 ¼ �B þ��1

(see Fig. 3). The reflected wave is registered in the

direction of the wavevector k0. The angle between k0 and

the x axis is �2 ¼ �B þ��2. Both the wavevectors, k and k0,

lie in the diffraction plane and jkj ¼ jk0j ¼ k ¼ 2�=�. We

consider the case when the angular deviations ��1 and

��2 are small. The deviation of the scattering vector

Q ¼ k0 � k from the reciprocal-lattice vector h is defined by

the vector q (see Fig. 3). The appropriate projections of the

vector q are

qx ¼ k sin �Bð��1 ���2Þ;

qz ¼ �k cos �Bð��1 þ��2Þ: ð7Þ

We can also rewrite these relations as ��1;2 ¼

�ð2k cos �BÞ
�1
ðqx cot �B � qzÞ:

Traditionally, the angular deviations of the sample and

analyser crystal in the so-called triple-crystal scheme (Iida &

Kohra, 1979) are defined by ! and ", respectively. Then using

��1 ¼ ! and ��2 ¼ "� ! we can rewrite equation (7) in the

following form, which explicitly connects the position in

reciprocal space and the experimentally measured angular

parameters ! and ":

qx ¼ k sin �Bð2!� "Þ;

qz ¼ �k cos �B":

The entire phase shift consists of two components: the phase

shift of the transmitted wave and the phase shift of the

reflected wave. These additional phase shifts are defined via

optical path differences. We choose the origin (see Figs. 1 and

4) as a reference point in our calculation of the additional

phase shits. For X-rays incident on the left vertical face of the

structure (x = 0) the optical path difference increases along the

z direction as z sin �1 (see Fig. 4). The phase shift at the

node positions zn ¼ nd along the z direction is ’n
z;in ¼

ð2�=�Þnd sin �1. Thus the boundary conditions at the left face

of the structure (x = 0) are T0
n ¼ expði’n

z;inÞ and S0
n ¼ 0, where

n ¼ 0; 1; 2; . . . ;Nz � 1.

For X-rays incident on the top surface of the structure (z =

0) the optical path difference increases along the x direction as

m�x cos �1. Therefore, the phase shift of the incident wave in

both the lateral and vertical directions depends on �1. The

appropriate boundary condition at the top surface of the

structure can be written as Tm
0 ¼ expði’m

x;inÞ, where ’m
x;in ¼

ð2�=�Þm�x cos �1 and m ¼ 1; 2; . . . ;Mx.

Considering that the exiting X-ray wave emerges from the

top surface and the right vertical face of the structure (see Fig.

1), the boundary conditions for the reflected wave S at the

bottom surface and the left vertical face of the structure are

Sm
Nz
¼ 0 and S0

n ¼ 0, respectively.

In accordance with the model (see Fig. 2), we use a

rectangular Mx � Nz lattice having a fixed distance between

nodes to describe the dynamical diffraction process.

The simulation procedure based on equation (6) consists of

the external and internal cycles. The external cycle (from left

to right) starts with the first column (m ¼ 1) and goes up to the

last column (m ¼ Mx). Note that the left vertical face of the

structure corresponds to the 0th column. The internal cycle

(from top to bottom) starts with the first reflecting plane

(n ¼ 1) and goes up to the last one (n ¼ Nz). Note that the

top surface of the structure corresponds to the 0th plane.

For instance, for the first column we use the external

boundary conditions to calculate amplitudes of the reflected

and transmitted waves at each node of the column

fS1
ng¼ðS

1
0; S1

1; S1
2; . . . ; S1

Nz�1Þ and fT1
ng¼ðT

1
1 ;T1

2 ;T1
3 ; . . . ;T1

Nz
Þ,

respectively. Then substituting the amplitudes calculated for

the first column in equation (6) we can calculate the ampli-

tudes for the second column, namely fS2
ng and fT2

ng, and so on.

At the end of the external cycle we obtain arrays of the

reflected and transmitted amplitudes, namely fSm
n g and fTm

n g,

at each node of the two-dimensional lattice. Note that

according to the boundary conditions we apply for the

amplitudes the following phase factors: expði’m
x;inÞ, where

’m
x;in ¼ ð2�=�Þm�x cos �1, when we do calculations for the mth

column, and expði’n
z;inÞ, where ’n

z;in ¼ ð2�=�Þnd sin �1, when

we do calculations for the nth plane.

Hence, using equation (6) and the boundary conditions for

the entering wavefield we are able to calculate the reflection

amplitudes, fSm
n ð�1Þg, at each node. To calculate the entire

reflection amplitude we have to take into account the addi-

tional phase shifts, defined by the direction of the vector k0 or

the angle �2.

The amplitude reflection coefficient, Sð�1; �2Þ, of the lateral

plane-parallel crystalline structure is a sum of the amplitudes

of waves exiting the top surface of the structure, namely

fSm
0 ð�1Þg, and the right vertical face of the structure, namely

fS
Mx
n ð�1Þg, with additional phase factors:

Sð�1; �2Þ ¼
PMx

m¼0

Sm
0 ð�1Þ expði’m

x;exÞ

þ
XNz

n¼1

SMx
n ð�1Þ expði’n

z;exÞ expði’Mx
x;exÞ; ð8Þ

where the additional phase factors ’m
x;ex ¼ �ð2�=�Þm�x cos �2

and ’n
z;ex ¼ ð2�=�Þnd sin �2 depend on �2 ¼ �B þ��2. The

phase factor expði’Mx
x;exÞ takes into account the x coordinate of

the right vertical face of the structure, namely Lx ¼ Mx�x.

Thus, the amplitude Sð�1; �2Þ depends on both �1 and �2.

Therefore equation (8) allows one to simulate RSMs. Also one

can use equation (8) to calculate the appropriate directional

scans in reciprocal space. For instance, a qz-scan (CTR)

simulation can be done if �1 ¼ �2 (or 2! ¼ ").
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4. Numerical modelling

The numerical modelling of RSMs and directional scans in

reciprocal space is performed using equations (6) and (8). In

our simulations we use Cu K�1 radiation (the wavelength is

0.154056 nm) for the (111) reflection of a Ge lateral crystalline

structure. The thickness of this structure is Lz ¼ 10000 d111 ¼

3.27 mm. We use several widths of the structure: Lx = 1.35, 5.39,

13.5, 53.9 mm, which correspond to the following number of

nodes Mx = 1000, 4000, 10000, 40000, respectively. In an effort

to carry out a proper normalization all simulated reflected

wave intensities were normalized on the maximum intensity of

the Darwin curve for a plane-parallel crystal of the same

thickness.

Rocking curves shown in Fig. 5 were simulated using

equation (8) for the case of !–2� scans (i.e. �1 ¼ �2). Then the

optical path difference � ¼ �1 þ�2 ¼ 2z sin � (� ¼ �1 ¼ �2)

(see Fig. 4) does not depend on the x coordinate, and the

entire phase shift at the top surface of the structure is

’m
x ¼ ’

m
x;in þ ’

m
x;ex ¼ 0.

The extinction length (Authier, 2001) for the Ge(111)

reflection for a semi-infinite crystal is 0.67 mm, the full width at

half-maximum (FWHM) of the Darwin curve is 15.4 arcsec

(Stepanov & Forrest, 2008). In the case of small lateral width

(Lx = 1.35 mm) the simulated rocking curve corresponds to the

kinematical limit (see Fig. 5a). As the width of the structure

increases we observe a gradual transfer into dynamical

diffraction (see Figs. 5b, 5c), where thickness oscillations are

still observable even within the angular region of Darwin’s

‘table’. For a large width of the structure (Lx = 53.9 mm) the

simulated rocking curves for a lateral crystalline structure and

a plane-parallel crystal are in close agreement (see Fig. 5d).

Fig. 6 shows the RSM simulations for lateral crystalline

structures of different width. If the lateral width is small, the

shape of the RSM (see Fig. 6a) is consistent with a typical

kinematical diffraction case (Authier, 2001):

Iðqx; qzÞ ¼ Sðqx; qzÞ
�� ��2 / sincðqxLx=2Þ

�� ��2 sincðqzLz=2Þ
�� ��2;

where sincðxÞ ¼ sinðxÞ=x. Both the width of the central peak

and the period of lateral oscillations in the qx direction

decrease as the lateral width of the structure increases. The

period of lateral oscillations is inversely proportional to the

lateral size of the structure as evident from Fig. 7, which shows

qx-scans across the central peak of the RSM.

The obtained simulation results are in good agreement with

the solution obtained by integration of Takagi’s equations

(Kolosov & Punegov, 2005).

5. Conclusion

We demonstrated that Darwin’s approach using algebraic

recurrence relations can be extended to the case of lateral

plane-parallel crystalline structures. This approach, being

simple and transparent, is faster than the one based on

Takagi’s equations and allows simulations of RSMs. It is

especially important for the solution of inverse problems using

minimization of the discrepancy between experimental and
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Figure 6
RSMs of X-ray diffraction on plane-parallel lateral crystalline structures
with thickness Lz = 3.27 mm and different widths: (a) Lx = 1.35 mm, (b) Lx

= 5.39 mm, (c) Lx = 13.5 mm and (d) Lx = 53.9 mm.



simulated data (Pavlov et al., 1995; Kirste et al., 2005).

Therefore this new approach can be widely used for non-

destructive testing of lateral structures used in opto- and

microelectronics devices, nonvolatile memory devices and

X-ray optics. This approach can potentially be extended

further to the three-dimensional case in both the Fourier space

and real space.
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